Optimal density of bacterial cells

PLoS Comput Biol. 2023 Jun 12;19(6):e1011177. doi: 10.1371/journal.pcbi.1011177. eCollection 2023 Jun.

Abstract

A substantial fraction of the bacterial cytosol is occupied by catalysts and their substrates. While a higher volume density of catalysts and substrates might boost biochemical fluxes, the resulting molecular crowding can slow down diffusion, perturb the reactions' Gibbs free energies, and reduce the catalytic efficiency of proteins. Due to these tradeoffs, dry mass density likely possesses an optimum that facilitates maximal cellular growth and that is interdependent on the cytosolic molecule size distribution. Here, we analyze the balanced growth of a model cell, accounting systematically for crowding effects on reaction kinetics. Its optimal cytosolic volume occupancy depends on the nutrient-dependent resource allocation into large ribosomal vs. small metabolic macromolecules, reflecting a tradeoff between the saturation of metabolic enzymes, favoring larger occupancies with higher encounter rates, and the inhibition of the ribosomes, favoring lower occupancies with unhindered diffusion of tRNAs. Our predictions across growth rates are quantitatively consistent with the experimentally observed reduction in volume occupancy on rich media compared to minimal media in E. coli. Strong deviations from optimal cytosolic occupancy only lead to minute reductions in growth rate, which are nevertheless evolutionarily relevant due to large bacterial population sizes. In sum, cytosolic density variation in bacterial cells appears to be consistent with an optimality principle of cellular efficiency.

MeSH terms

  • Biochemical Phenomena*
  • Cell Proliferation
  • Escherichia coli* / metabolism
  • Kinetics
  • Ribosomes / metabolism

Grants and funding

This work was supported by DFG Grants CRC 1310 to T.Y.P. and M.J.L. and by a grant of the Volkswagen Foundation in the “Life?” initiative to M.J.L.. This work was also supported, in part, by the MODS project funded from the programme “Profilbildung 2020” (grant number PROFILNRW2020-107-A), an initiative of the Ministry of Culture and Science of the State of North Rhine-Westphalia awarded to M.J.L.. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The grant from Volkswagen Foundation supported the salary of TYP.