Effect of Macrocycles on the Photochemical and Electrochemical Properties of Cobalt-Dehydrocorrin Complex: Formation and Investigation of Co(I) Species

Inorg Chem. 2023 Jul 31;62(30):11785-11795. doi: 10.1021/acs.inorgchem.3c00882. Epub 2023 Jun 12.

Abstract

Co(II)-pyrocobester (P-Co(II)), a dehydrocorrin complex, was semisynthesized from vitamin B12 (cyanocobalamin), and its photochemical and electrochemical properties were investigated and compared to those of the cobester (C-Co(II)), the cobalt-corrin complex. The UV-vis absorptions of P-Co(II) in CH2Cl2, ascribed to the π-π* transition, were red-shifted compared to those of C-Co(II) due to the π-expansion of the macrocycle in the pyrocobester. The reversible redox couple of P-Co(II) was observed at E1/2 = -0.30 V vs Ag/AgCl in CH3CN, which was assigned to the Co(II)/Co(I) redox couple by UV-vis, ESR, and molecular orbital analysis. This redox couple was positively shifted by 0.28 V compared to that of C-Co(II). This is caused by the high electronegativity of the dehydrocorrin macrocycle, which was estimated by DFT calculations for the free-base ligands. The reactivity of the Co(I)-pyrocobester (P-Co(I)) was evaluated by the reaction with methyl iodide in CV and UV-vis to form a photosensitive Co(III)-CH3 complex (P-Co(III)-CH3). The properties of the excited state of P-Co(I), *Co(I), were also investigated by femtosecond transient absorption (TA) spectroscopy. The lifetime of *Co(I) was estimated to be 29 ps from the kinetic trace at 587 nm. The lifetime of *Co(I) became shorter in the presence of Ar-X, such as iodobenzonitrile (1a), bromobenzonitrile (1b), and chlorobenzonitrile (1c), and the rate constants of electron transfer (ET) between the *Co(I) and Ar-X were determined to be 2.9 × 1011 M-1 s-1, 4.9 × 1010 M-1 s-1, and 1.0 × 1010 M-1 s-1 for 1a, 1b, and 1c, respectively.