Understanding Auger recombination in perovskite solar cells

Phys Chem Chem Phys. 2023 Jun 21;25(24):16459-16468. doi: 10.1039/d3cp00441d.

Abstract

Enhanced radiative efficiency, long carrier lifetimes, and high carrier mobilities are hallmarks of perovskite solar cells. Considering this, complete cells experience large nonradiative recombination losses that restrict their VOC considerably below the Shockley-Queisser limit. Auger recombination, which involves two free photo-induced carriers and a trapped charge carrier, is one potential mechanism. Herein, the effects of Auger capture coefficients in mixed-cation perovskites are analyzed employing SCAPS-1D computations. It is demonstrated that VOC and FF are severely decreased with an increase in the acceptor concentration and Auger capture coefficients of perovskites, thus reducing the device performance. When the Auger capture coefficient is increased to 10-20 cm6 s-1 under the acceptor concentration of 1016 cm-3, the performance is drastically lowered from 21.5% (without taking Auger recombination into account) to 9.9%. The findings suggest that in order to increase the efficiency of perovskite solar cells and prevent the effects of Auger recombination, the Auger recombination coefficients should be less than 10-24 cm6 s-1.