Green synthesised zinc oxide nanoparticles reveal potent in vivo and in vitro antibacterial efficacy against Proteus mirabilis isolates

Int J Pharm. 2023 Jul 25:642:123111. doi: 10.1016/j.ijpharm.2023.123111. Epub 2023 Jun 10.

Abstract

Currently, the spread of antimicrobial resistance dissemination is expanding at an accelerated rate. Therefore, numerous researchers haveinvestigatedalternative treatments in an effort to combat this significant issue. This study evaluated the antibacterial properties of zinc-oxide nanoparticles (ZnO NPs) synthesised by Cycas circinalis against Proteus mirabilis clinical isolates. HPLC was utilised for the identification and quantification of C. circinalis metabolites. The green synthesis of ZnO NPs has been confirmed using UV-VIS spectrophotometry. The Fourier transform infrared spectrum of metal oxide bonds has been compared to the free C. circinalis extract spectrum. The crystalline structure and elemental composition were investigated using X-ray diffraction and Energy-dispersive X-ray techniques. The morphology of nanoparticles was assessed by scanning and transmission electron microscopies, which revealed an average particle size of 26.83 ± 5.87 nm with spherical outlines. The dynamic light scattering technique confirms the optimum stability of ZnO NPs with a zeta potential value equal to 26.4 ± 0.49 mV. Using agar well diffusion and broth microdilution methods, we elucidated the antibacterial activity of ZnO NPs in vitro. MIC values for ZnO NPs ranged from 32 to 128 µg/mL. In 50% of the tested isolates, the membrane integrity was compromised by ZnO nanoparticles. In addition, we assessed the in vivo antibacterial capacity of ZnO NPs by a systemic infection induction using P. mirabilis bacteria in mice. The bacterial count in the kidney tissues was determined, and a significant decrease in CFU/g tissues was observed. The survival rate was evaluated, and the ZnO NPs treated group had higher survival rates. The histopathological studies demonstrated that kidney tissues treated with ZnO NPs had normal structures and architecture. Moreover, the immunohistochemical examinations and ELISA revealed that ZnO NPs substantially decreased the proinflammatory mediators NF-kβ, COX-2, TNF-α, IL-6, and IL-1β in kidney tissues. In conclusion, the results of this study suggest that ZnO NPs are effective against bacterial infections caused by P. mirabilis.

Keywords: Bacterial membrane; Cycas circinalis; In vitro characterization; In vitro/in vivo antibacterial activity; Systemic infection; Zinc oxide nanoparticles.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Metal Nanoparticles* / chemistry
  • Mice
  • Microbial Sensitivity Tests
  • Nanoparticles* / chemistry
  • Oxides
  • Plant Extracts / chemistry
  • Proteus mirabilis
  • Spectroscopy, Fourier Transform Infrared
  • X-Ray Diffraction
  • Zinc Oxide* / chemistry
  • Zinc Oxide* / pharmacology

Substances

  • Zinc Oxide
  • Anti-Bacterial Agents
  • Oxides
  • Plant Extracts