Exosome-loaded microneedle patches: Promising factor delivery route

Int J Biol Macromol. 2023 Jul 15:243:125232. doi: 10.1016/j.ijbiomac.2023.125232. Epub 2023 Jun 9.

Abstract

During the past decades, the advent of different microneedle patch (MNPs) systems paves the way for the targeted and efficient delivery of several growth factors into the injured sites. MNPs consist of several micro-sized (25-1500 μm) needle rows for painless delivery of incorporated therapeutics and increase of regenerative outcomes. Recent data have indicated the multifunctional potential of varied MNP types for clinical applications. Advances in the application of materials and fabrication processes enable researchers and clinicians to apply several MNP types for different purposes such as inflammatory conditions, ischemic disease, metabolic disorders, vaccination, etc. Exosomes (Exos) are one of the most interesting biological bioshuttles that participate in cell-to-cell paracrine interaction with the transfer of signaling biomolecules. These nano-sized particles, ranging from 50 to 150 nm, can exploit several mechanisms to enter the target cells and deliver their cargo into the cytosol. In recent years, both intact and engineered Exos have been increasingly used to accelerate the healing process and restore the function of injured organs. Considering the numerous benefits provided by MNPs, it is logical to hypothesize that the development of MNPs loaded with Exos provides an efficient therapeutic platform for the alleviation of several pathologies. In this review article, the authors collected recent advances in the application of MNP-loaded Exos for therapeutic purposes.

Keywords: Exosomes; Local delivery; Microneedle patch; Therapeutic outcomes; Tissue engineering modalities.

Publication types

  • Review

MeSH terms

  • Drug Delivery Systems
  • Exosomes* / metabolism
  • Needles
  • Vaccination
  • Wound Healing