Sugarcane ash and sugarcane ash-derived silica nanoparticles alter cellular metabolism in human proximal tubular kidney cells

Environ Pollut. 2023 Sep 1:332:121951. doi: 10.1016/j.envpol.2023.121951. Epub 2023 Jun 8.

Abstract

Multiple epidemics of chronic kidney disease of an unknown etiology (CKDu) have emerged in agricultural communities around the world. Many factors have been posited as potential contributors, but a primary cause has yet to be identified and the disease is considered likely multifactorial. Sugarcane workers are largely impacted by disease leading to the hypothesis that exposure to sugarcane ash produced during the burning and harvest of sugarcane could contribute to CKDu. Estimated exposure levels of particles under 10 μm (PM10) have been found to be exceptionally high during this process, exceeding 100 μg/m3 during sugarcane cutting and averaging ∼1800 μg/m3 during pre-harvest burns. Sugarcane stalks consist of ∼80% amorphous silica and generate nano-sized silica particles (∼200 nm) following burning. A human proximal convoluted tubule (PCT) cell line was subjected to treatments ranging in concentration from 0.025 μg/mL to 25 μg/mL of sugarcane ash, desilicated sugarcane ash, sugarcane ash-derived silica nanoparticles (SAD SiNPs) or manufactured pristine 200 nm silica nanoparticles. The combination of heat stress and sugarcane ash exposure on PCT cell responses was also assessed. Following 6-48 h of exposure, mitochondrial activity and viability were found to be significantly reduced when exposed to SAD SiNPs at concentrations 2.5 μg/mL or higher. Oxygen consumption rate (OCR) and pH changes suggested significant alteration to cellular metabolism across treatments as early as 6 h following exposure. SAD SiNPs were found to inhibit mitochondrial function, reduce ATP generation, increase reliance on glycolysis, and reduce glycolytic reserve. Metabolomic analysis revealed several cellular energetics pathways (e.g., fatty acid metabolism, glycolysis, and TCA cycle) are significantly altered across ash-based treatments. Heat stress did not influence these responses. Such changes indicate that exposure to sugarcane ash and its derivatives can promote mitochondrial dysfunction and disrupt metabolic activity of human PCT cells.

Keywords: And kidney disease metabolism; Chronic kidney disease of an unknown etiology; Climate; Environmental toxicology; Heat stress; Mitochondrial dysfunction; Silica nanoparticles.

MeSH terms

  • Cell Line
  • Humans
  • Kidney / chemistry
  • Nanoparticles* / toxicity
  • Saccharum*
  • Silicon Dioxide / analysis
  • Silicon Dioxide / toxicity

Substances

  • Silicon Dioxide