Electrokinetically enhanced label-free plasmonic sensing for rapid detection of tumor-derived extracellular vesicles

Biosens Bioelectron. 2023 Oct 1:237:115422. doi: 10.1016/j.bios.2023.115422. Epub 2023 Jun 3.

Abstract

of rare circulating extracellular vesicles (EV) from early cancers or different types of host cells requires extremely sensitive EV sensing technologies. Nanoplasmonic EV sensing technologies have demonstrated good analytical performances, but their sensitivity is often limited by EVs' diffusion to the active sensor surface for specific target EV capture. Here, we developed an advanced plasmonic EV platform with electrokinetically enhanced yields (KeyPLEX). The KeyPLEX system effectively overcomes diffusion-limited reactions with applied electroosmosis and dielectrophoresis forces. These forces bring EVs toward the sensor surface and concentrate them in specific areas. Using the keyPLEX, we showed significant improvements in detection sensitivity by ∼100-fold, leading to the sensitive detection of rare cancer EVs from human plasma samples in 10 min. The keyPLEX system could become a valuable tool for point-of-care rapid EV analysis.

Keywords: Cancer; Electrokinetics; Extracellular vesicles; Label-free detection; Plasmonic sensing.

MeSH terms

  • Biosensing Techniques*
  • Electroosmosis
  • Extracellular Vesicles*
  • Humans
  • Neoplasms* / diagnosis