Visual analysis of the prevention and control measures of COVID-19 in Chinese ports

Environ Sci Pollut Res Int. 2023 Jul;30(33):80432-80441. doi: 10.1007/s11356-023-27925-y. Epub 2023 Jun 10.

Abstract

In 2022, COVID-19 solutions in China have entered a normal stage, and the solutions imported from ports have been transformed from emergency prevention and control measures to investigative long-term prevention and control measures. Therefore, it is necessary to study solutions for COVID-19 at border ports. In this study, 170 research papers related to the prevention and control measures of COVID-19 at ports from 2020 to September 2022 were retrieved from Wanfang database, HowNet database, Wip database, and WoS core collection. Citespace 6.1.R2 software was used to research institutions visualize and analyze researchers and keywords to explore their research hotspots and trends. After analysis, the overall volume of documents issued in the past 3 years was stable. The major contributors are scientific research teams such as the Chinese Academy of Inspection and Quarantine Sciences (Han Hui et al.) and Beijing Customs (Sun Xiaodong et al.), with less cross-agency cooperation. The top five high-frequency keywords with cumulative frequency are as follows: COVID-19 (29 times), epidemic prevention and control (29 times), ports (28 times), health quarantine (16 times), and risk assessment (16 times). The research hotspots in the field of prevention and control measures for COVID-19 at ports are constantly changing with the progress of epidemic prevention and control. Cooperation between research institutions needs to be strengthened urgently. The research hotspots are the imported epidemic prevention and control, risk assessment, port health quarantine, and the normalized epidemic prevention and control mechanism, which is the trend of research and needs further exploration in the future.

Keywords: Big data; COVID-19; Chinese ports; CiteSpace; Measures; Prevention and control; Visualization.

MeSH terms

  • Beijing
  • COVID-19* / prevention & control
  • China
  • Humans
  • Software