A Mousepad Triboelectric-Piezoelectric Hybrid Nanogenerator (TPHNG) for Self-Powered Computer User Behavior Monitoring Sensors and Biomechanical Energy Harvesting

Polymers (Basel). 2023 May 26;15(11):2462. doi: 10.3390/polym15112462.

Abstract

Hybrid nanogenerators based on the principle of surface charging of functional films are significant in self-powering sensing and energy conversion devices due to their multiple functions and high conversion efficiency, although applications remain limited due to a lack of suitable materials and structures. Here, we investigate a triboelectric-piezoelectric hybrid nanogenerator (TPHNG) in the form of a mousepad for computer user behavior monitoring and energy harvesting. Triboelectric and piezoelectric nanogenerators with different functional films and structures work independently to detect sliding and pressing movements, and the profitable coupling between the two nanogenerators leads to enhanced device outputs/sensitivity. Different mouse operations such as clicking, scrolling, taking-up/putting-down, sliding, moving rate, and pathing can be detected by the device via distinguishable patterns of voltage ranging from 0.6 to 36 V. Based on operation recognition, human behavior monitoring is realized, with monitoring of tasks such as browsing a document and playing a computer game being successfully demonstrated. Energy harvesting from mouse sliding, patting, and bending of the device is realized with output voltages up to 37 V and power up to 48 μW while exhibiting good durability up to 20,000 cycles. This work presents a TPHNG utilizing surface charging for self-powered human behavior sensing and biomechanical energy harvesting.

Keywords: behavior monitoring; energy; film; mousepad; surface charging; triboelectric-piezoelectric hybrid nanogenerator (TPHNG).

Grants and funding

This work was supported by the National Natural Science Foundation of China (51873083, 21671185), Joint Project of Industry—University-Research of Jiangsu Province (BY2020679), and Graduate Practice and Innovation Project in Jiangsu Province (SJCX22_1937).