Site-Selective Solvation-Induced Conformational Switching of Heteroleptic Heteronuclear Tb(III) and Y(III) Trisphthalocyaninates for the Control of Their Magnetic Anisotropy

Molecules. 2023 May 31;28(11):4474. doi: 10.3390/molecules28114474.

Abstract

In the present work, we report the synthesis of isomeric heteronuclear terbium(III) and yttrium(III) triple-decker phthalocyaninates [(BuO)8Pc]M[(BuO)8Pc]M*[(15C5)4Pc] (M = Tb, M* = Y or M = Y, M* = Tb, [(BuO)8Pc]2--octa-n-butoxyphthalocyaninato-ligand, [(15C5)4Pc]2--tetra-15-crown-5-phthalocyaninato-ligand). We show that these complexes undergo solvation-induced switching: the conformers in which both metal centers are in square-antiprismatic environments are stabilized in toluene, whereas in dichloromethane, the metal centers M and M* are in distorted prismatic and antiprismatic environments, respectively. This conclusion follows from the detailed analysis of lanthanide-induced shifts in 1H NMR spectra, which makes it possible to extract the axial component of the magnetic susceptibility tensor χaxTb and to show that this term is particularly sensitive to conformational switching when terbium(III) ion is placed in the switchable "M" site. This result provides a new tool for controlling the magnetic properties of lanthanide complexes with phthalocyanine ligands.

Keywords: axial magnetic anisotropy; conformational switching; lanthanide-induced shift; solvation; terbium; triple-decker phthalocyaninate.

MeSH terms

  • Anisotropy
  • Lanthanoid Series Elements* / chemistry
  • Ligands
  • Magnetic Phenomena
  • Models, Molecular
  • Terbium* / chemistry

Substances

  • Terbium
  • Ligands
  • Lanthanoid Series Elements