Does EGFR Signaling Mediate Orexin System Activity in Sleep Initiation?

Int J Mol Sci. 2023 May 30;24(11):9505. doi: 10.3390/ijms24119505.

Abstract

Sleep-wake cycle disorders are an important symptom of many neurological diseases, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Circadian rhythms and sleep-wake cycles play a key role in maintaining the health of organisms. To date, these processes are still poorly understood and, therefore, need more detailed elucidation. The sleep process has been extensively studied in vertebrates, such as mammals and, to a lesser extent, in invertebrates. A complex, multi-step interaction of homeostatic processes and neurotransmitters provides the sleep-wake cycle. Many other regulatory molecules are also involved in the cycle regulation, but their functions remain largely unclear. One of these signaling systems is epidermal growth factor receptor (EGFR), which regulates the activity of neurons in the modulation of the sleep-wake cycle in vertebrates. We have evaluated the possible role of the EGFR signaling pathway in the molecular regulation of sleep. Understanding the molecular mechanisms that underlie sleep-wake regulation will provide critical insight into the fundamental regulatory functions of the brain. New findings of sleep-regulatory pathways may provide new drug targets and approaches for the treatment of sleep-related diseases.

Keywords: EGFR; ErbB; neurotransmitters; orexins; sleep; zebrafish.

Publication types

  • Review

MeSH terms

  • Animals
  • Circadian Rhythm / physiology
  • ErbB Receptors
  • Humans
  • Mammals
  • Orexins
  • Signal Transduction
  • Sleep / physiology
  • Sleep Wake Disorders*
  • Wakefulness* / physiology

Substances

  • Orexins
  • ErbB Receptors
  • EGFR protein, human