Trends in Photothermal Nanostructures for Antimicrobial Applications

Int J Mol Sci. 2023 May 27;24(11):9375. doi: 10.3390/ijms24119375.

Abstract

The rapid development of antimicrobial resistance due to broad antibiotic utilisation in the healthcare and food industries and the non-availability of novel antibiotics represents one of the most critical public health issues worldwide. Current advances in nanotechnology allow new materials to address drug-resistant bacterial infections in specific, focused, and biologically safe ways. The unique physicochemical properties, biocompatibility, and wide range of adaptability of nanomaterials that exhibit photothermal capability can be employed to develop the next generation of photothermally induced controllable hyperthermia as antibacterial nanoplatforms. Here, we review the current state of the art in different functional classes of photothermal antibacterial nanomaterials and strategies to optimise antimicrobial efficiency. The recent achievements and trends in developing photothermally active nanostructures, including plasmonic metals, semiconductors, and carbon-based and organic photothermal polymers, and antibacterial mechanisms of action, including anti-multidrug-resistant bacteria and biofilm removal, will be discussed. Insights into the mechanisms of the photothermal effect and various factors influencing photothermal antimicrobial performance, emphasising the structure-performance relationship, are discussed. We will examine the photothermal agents' functionalisation for specific bacteria, the effects of the near-infrared light irradiation spectrum, and active photothermal materials for multimodal synergistic-based therapies to minimise side effects and maintain low costs. The most relevant applications are presented, such as antibiofilm formation, biofilm penetration or ablation, and nanomaterial-based infected wound therapy. Practical antibacterial applications employing photothermal antimicrobial agents, alone or in synergistic combination with other nanomaterials, are considered. Existing challenges and limitations in photothermal antimicrobial therapy and future perspectives are presented from the structural, functional, safety, and clinical potential points of view.

Keywords: antibacterial mechanisms; antibiofilm; photothermal antimicrobials; wound healing.

Publication types

  • Review

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Anti-Infective Agents* / pharmacology
  • Anti-Infective Agents* / therapeutic use
  • Hyperthermia, Induced*
  • Nanostructures* / chemistry
  • Nanostructures* / therapeutic use
  • Nanotechnology

Substances

  • Anti-Infective Agents
  • Anti-Bacterial Agents