Influence of Age on Hyperoxia-Induced Cardiac Pathophysiology in Type 1 Diabetes Mellitus (T1DM) Mouse Model

Cells. 2023 May 24;12(11):1457. doi: 10.3390/cells12111457.

Abstract

Mechanical ventilation often results in hyperoxia, a condition characterized by excess SpO2 levels (>96%). Hyperoxia results in changes in the physiological parameters, severe cardiac remodeling, arrhythmia development, and alteration of cardiac ion channels, all of which can point toward a gradual increase in the risk of developing cardiovascular disease (CVD). This study extends the analysis of our prior work in young Akita mice, which demonstrated that exposure to hyperoxia worsens cardiac outcomes in a type 1 diabetic murine model as compared to wild-type (WT) mice. Age is an independent risk factor, and when present with a major comorbidity, such as type 1 diabetes (T1D), it can further exacerbate cardiac outcomes. Thus, this research subjected aged T1D Akita mice to clinical hyperoxia and analyzed the cardiac outcomes. Overall, aged Akita mice (60 to 68 weeks) had preexisting cardiac challenges compared to young Akita mice. Aged mice were overweight, had an increased cardiac cross-sectional area, and showed prolonged QTc and JT intervals, which are proposed as major risk factors for CVD like intraventricular arrhythmias. Additionally, exposure to hyperoxia resulted in severe cardiac remodeling and a decrease in Kv 4.2 and KChIP2 cardiac potassium channels in these rodents. Based on sex-specific differences, aged male Akita mice had a higher risk of poor cardiac outcomes than aged females. Aged male Akita mice had prolonged RR, QTc, and JT intervals even at baseline normoxic exposure. Moreover, they were not protected against hyperoxic stress through adaptive cardiac hypertrophy, which, at least to some extent, is due to reduced cardiac androgen receptors. This study in aged Akita mice aims to draw attention to the clinically important yet understudied subject of the effect of hyperoxia on cardiac parameters in the presence of preexisting comorbidities. The findings would help revise the provision of care for older T1D patients admitted to ICUs.

Keywords: aging; cardiovascular disease (CVD); hyperoxia; mechanical ventilation; potassium channels; type 1 diabetes.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cardiomegaly
  • Diabetes Mellitus, Type 1* / complications
  • Disease Models, Animal
  • Female
  • Hyperoxia* / complications
  • Male
  • Mice
  • Ventricular Remodeling