Field-Free Spin-Orbit Torque Driven Switching of Perpendicular Magnetic Tunnel Junction through Bending Current

Nano Lett. 2023 Jun 28;23(12):5482-5489. doi: 10.1021/acs.nanolett.3c00639. Epub 2023 Jun 9.

Abstract

Current-induced spin-orbit torques (SOTs) enable fast and efficient manipulation of the magnetic state of magnetic tunnel junctions (MTJs), making them attractive for memory, in-memory computing, and logic applications. However, the requirement of the external magnetic field to achieve deterministic switching in perpendicularly magnetized SOT-MTJs limits its implementation for practical applications. Here, we introduce a field-free switching (FFS) solution for the SOT-MTJ device by shaping the SOT channel to create a "bend" in the SOT current. The resulting bend in the charge current creates a spatially nonuniform spin current, which translates into inhomogeneous SOT on an adjacent magnetic free layer enabling deterministic switching. We demonstrate FFS experimentally on scaled SOT-MTJs at nanosecond time scales. This proposed scheme is scalable, material-agnostic, and readily compatible with wafer-scale manufacturing, thus creating a pathway for developing purely current-driven SOT systems.

Keywords: MRAM; field-free switching; magnetic tunnel junction; memories; spintronics; spin−orbit torques.