Functionalization of carbon from rubber fruit shells (Hevea brasiliensis) with silane agents and its application to the adsorption of bi-component mixtures of methylene blue and crystal violet

Environ Sci Pollut Res Int. 2023 Jun 9. doi: 10.1007/s11356-023-28031-9. Online ahead of print.

Abstract

In this research, activated carbon was obtained from rubber fruit shells (ACRPs). The obtained activated carbon (ACRPs) was modified by magnetite particle coating and silanization with triethoxyiphenylsilane (TEPS) to produce a new magnetic adsorbent (ACRPs-MS). The affinity of as-prepared adsorbent (ACRPs-MS) toward methylene blue (MB) and crystal violet (CV) dyes was tested in mono-component and bi-component solutions. Structural characterization proves the success of the magnetite coating process and the silanization of ACRPs. In the infrared (IR) spectroscopy spectrum of ACRPs-MS, Si-O-Fe and Si-O-Si bonds were identified, which indicated the presence of magnetite and silane. This is also supported by the elemental composition contained in the energy-dispersive X-ray (EDX) diffractogram. In addition, the presence of the porous structure of the surface of the material and the increase in the specific surface area increase the accessibility of contaminants such as MB and CV dyes to be adsorbed to the ACRPs-MS adsorption site effectively. The experimental results showed that the adsorption of mono-component MB and CV dyes by ACRPs-MS was optimum at pH 8 and an interaction time of 60 min. The adsorption kinetics of mono-component MB and CV dyes by ACRPs-MS tended to follow pseudo-second-order kinetics (PSO) models with PSO rate constant (k2) values of 0.198 and 0.993 g mg-1 min-1, respectively. The adsorption of MB and CV dyes by ACRPs-MS in a bi-component mixture tends to follow the Langmuir isotherm model with adsorption capacity (qm) values of 85.060 and 90.504 mg g-1, respectively. Analysis of adsorption data on the bi-component mixture between MB and CV by ACRPs-MS with the Langmuir isotherm equation for a binary mixture resulted in qm of 22.645 × 10-3 mmol equiv g-1. ACRPs-MS material can be used repeatedly five times with adsorption ability > 80%. Desorption of MB and CV dyes was carried out using 0.05 M HCl solution. ACRPs-MS material was able to adsorb MB and CV dyes with a large adsorption capacity and could be used in repeated adsorption. Thus, it can be stated that ACRPs-MS can be used as an effective adsorbent for MB and CV dyes, either singly or in a bi-component mixture.

Keywords: Adsorption; Carbon functionalization; Crystal violet; Methylene blue; Silanization.