Identification of colorectal cancer progression-associated intestinal microbiome and predictive signature construction

J Transl Med. 2023 Jun 8;21(1):373. doi: 10.1186/s12967-023-04119-1.

Abstract

Objective: The relationship between intestinal microbiome and colorectal cancer (CRC) progression is unclear. This study aims to identify the intestinal microbiome associated with CRC progression and construct predictive labels to support the accurate assessment and treatment of CRC.

Method: The 192 patients included in the study were divided into stage I-II and stage III-IV CRC patients according to the pathological stages, and preoperative stools were collected from both groups for 16S rDNA sequencing of the intestinal microbiota. Pearson correlation and Spearman correlation coefficient analysis were used to analyze the differential intestinal microbiome and the correlation with tumor microenvironment and to predict the functional pathway. XGBoost model (XGB) and Random Forest model (RF) were used to construct the microbiome-based signature. The total RNA extraction from 17 CRC tumor simples was used for transcriptome sequencing.

Result: The Simpson index of intestinal microbiome in stage III-IV CRC were significantly lower than those in stage I-II CRC. Proteus, Parabacteroides, Alistipes and Ruminococcus etc. are significantly enriched genus in feces of CRC patients with stage III-IV. ko00514: Other types of O - glycan biosynthesis pathway is relevant with CRC progression. Alistipes indistinctus was positively correlated with mast cells, immune activators IL-6 and IL6R, and GOBP_PROTEIN_FOLDING_IN_ENDOPLASMIC_RETICULUM dominantly. The Random Forest (RF) model and eXtreme Gradient Boosting (XGBoost) model constructed with 42 CRC progression-associated differential bacteria were effective in distinguishing CRC patients between stage I-II and stage III-IV.

Conclusions: The abundance and diversity of intestinal microbiome may increase gradually with the occurrence and progression of CRC. Elevated fetal abundance of Proteus, Parabacteroides, Alistipes and Ruminococcus may contribute to CRC progression. Enhanced synthesis of O - glycans may result in CRC progression. Alistipes indistinctus may play a facilitated role in mast cell maturation by boosting IL-6 production. Alistipes indistinctus may work in the correct folding of endoplasmic reticulum proteins in CRC, reducing ER stress and prompting the survival and deterioration of CRC, which may owe to the enhanced PERK expression and activation of downstream UPR by Alistipes indistinctus. The CRC progression-associated differential intestinal microbiome identified in our study can be served as potential microbial markers for CRC staging prediction.

Keywords: 16S rRNA; Colorectal cancer; Immune infiltration; Intestinal microbiome; Staging prediction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteroidetes / genetics
  • Colorectal Neoplasms* / pathology
  • Feces / microbiology
  • Gastrointestinal Microbiome* / genetics
  • Humans
  • Interleukin-6
  • RNA, Ribosomal, 16S / genetics
  • Tumor Microenvironment

Substances

  • Interleukin-6
  • RNA, Ribosomal, 16S

Supplementary concepts

  • Alistipes indistinctus