Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters

Nat Commun. 2023 Jun 8;14(1):3374. doi: 10.1038/s41467-023-38914-7.

Abstract

The ligand effects of atomically precise metal nanoclusters on electrocatalysis kinetics have been rarely revealed. Herein, we employ atomically precise Au25 nanoclusters with different ligands (i.e., para-mercaptobenzoic acid, 6-mercaptohexanoic acid, and homocysteine) as paradigm electrocatalysts to demonstrate oxygen evolution reaction rate-determining step switching through ligand engineering. Au25 nanoclusters capped by para-mercaptobenzoic acid exhibit a better performance with nearly 4 times higher than that of Au25 NCs capped by other two ligands. We deduce that para-mercaptobenzoic acid with a stronger electron-withdrawing ability establishes more partial positive charges on Au(I) (i.e., active sites) for facilitating feasible adsorption of OH- in alkaline media. X-ray photo-electron spectroscopy and theoretical study indicate a profound electron transfer from Au(I) to para-mercaptobenzoic acid. The Tafel slope and in situ Raman spectroscopy suggest different ligands trigger different rate-determining step for these Au25 nanoclusters. The mechanistic insights reported here can add to the acceptance of atomically precise metal nanoclusters as effective electrocatalysts.

MeSH terms

  • Adsorption
  • Electron Transport
  • Electrons*
  • Ligands
  • Metals*
  • Oxidation-Reduction

Substances

  • Ligands
  • Metals