Simultaneous microextraction of pesticides from wastewater using optimized μSPEed and μQuEChERS techniques for food contamination analysis

Heliyon. 2023 May 26;9(6):e16742. doi: 10.1016/j.heliyon.2023.e16742. eCollection 2023 Jun.

Abstract

Food contamination with pesticides poses significant risks to consumer safety and undermines confidence in food supply chains. Detecting pesticides in food samples is a challenging task that requires efficient extraction techniques. This study aims to compare and validate two microextraction techniques, μSPEed and μQuEChERS-dSPE, for the simultaneous extraction of eight pesticides (paraquat, thiabendazole, asulam, picloram, ametryn, atrazine, linuron, and cymoxanil) from wastewater samples. A good analytical performance was obtained for both methodologies, with selectivity, linearity in the range 0.5-150 mg L-1 with coefficients of determination up to 0.9979, limits of detection (LODs) and limits of quantification (LOQs) ranging from 0.02 to 0.05 mg L-1 and from 0.06 to 0.17 mg L-1, respectively, precision below 14.7 mg L-1, and recoveries from wastewater samples in the range of 66.1-99.9%. The developed methodologies are simpler, faster, and require less sample and solvent volumes than conventional methodologies, having a lower impact on the environment. Nevertheless, the μSPEed approach was found to be more efficient, easier to perform, and with a higher greener profile. This study highlights the potential of microextraction techniques for the analysis of pesticide residues in food and environmental samples. Overall, it presents a fast and efficient method for the analysis of pesticides in wastewater samples, which can be useful for monitoring and controlling pesticide contamination in the environment.

Keywords: EU legislation; Environmental monitoring; Maximum residue levels; Microextraction; Pesticides; Residue analysis; Sample preparation; Ultrahigh-performance liquid chromatography; Validation; Wastewater; μQuEChERS; μSPEed.