How it feels in a cell

Trends Cell Biol. 2023 Nov;33(11):924-938. doi: 10.1016/j.tcb.2023.05.002. Epub 2023 Jun 5.

Abstract

Life emerges from thousands of biochemical processes occurring within a shared intracellular environment. We have gained deep insights from in vitro reconstitution of isolated biochemical reactions. However, the reaction medium in test tubes is typically simple and diluted. The cell interior is far more complex: macromolecules occupy more than a third of the space, and energy-consuming processes agitate the cell interior. Here, we review how this crowded, active environment impacts the motion and assembly of macromolecules, with an emphasis on mesoscale particles (10-1000 nm diameter). We describe methods to probe and analyze the biophysical properties of cells and highlight how changes in these properties can impact physiology and signaling, and potentially contribute to aging, and diseases, including cancer and neurodegeneration.

Keywords: active matter; mechanobiology; mesoscale; microrheology; molecular crowding.

Publication types

  • Review