Porcine cardiac blood - Salvia miltiorrhiza root alleviates cerebral ischemia reperfusion injury by inhibiting oxidative stress induced apoptosis through PI3K/AKT/Bcl-2/Bax signaling pathway

J Ethnopharmacol. 2023 Nov 15:316:116698. doi: 10.1016/j.jep.2023.116698. Epub 2023 Jun 5.

Abstract

Ethnopharmacological relevance: Salvia miltiorrhiza Bge. mixed with porcine cardiac blood (PCB-DS) is mainly employed for the treatment of brain ischemia-induced mental disturbances, palpitations and phlegm confusion based on the traditional principle of Menghe medical sect. PCB is the guide to DS and enhances the effect of DS. However, the potential mechanism of PCB-DS preventing cerebral ischemia/reperfusion injury (CIRI) from the perspective of oxidative stress induced cell apoptosis remains unknown.

Aim of the study: To investigate the pharmacological activity and molecular mechanism of PCB-DS against CIRI.

Materials and methods: DS samples processed with different methods were prepared and UPLC-Q-TOF-MS/MS was employed for qualitative analysis of the respective processing product. The middle cerebral artery occlusion reperfusion model was then established to investigate the pharmacological activities of PCB-DS. Pathological changes in the rat brain were observed by triphenyl tetrazolium chloride (TTC), hematoxylin-eosin, and TUNEL staining. The levels of IL-6, IL-1β, and TNF-α were detected by ELISA to evaluate the inflammatory damage. Metabolomics of cerebrospinal fluid was further used to explore the potential mechanism of PCB-DS in preventing CIRI. Based on this, the levels of oxidative stress-related lactate dehydrogenase (LDH), reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were determined. The protein levels of PI3K, AKT, Bcl-2, Bax, cleaved-caspase-3, and cleaved-caspase-9 proteins of the cerebral infarct zone were finally measured by western blotting.

Results: Forty-seven components were identified in four processing products. Compared to DS, the content of total aqueous components in PCB-DS was significantly increased including salvianolic acid B isomer, salvianolic acid D, salvianolic acid F, and salvianolic acid H/I/J. Among the DS, DS processed with wine, DS processed with pig blood, and DS processed with porcine cardiac blood, PCB-DS best alleviated the CIRI through the neurological score, brain infarct volume, brain histopathology and the levels of inflammatory factors in the brain. Twenty-five significant metabolites in the cerebrospinal fluid were screened out between the sham and I/R groups. They were mainly involved in the beta-alanine metabolism, histidine metabolism, and lysine degradation, which indicated that PCB-DS may inhibit oxidative stress-induced apoptosis to achieve treating ischemic stroke. The results of biomedical examination showed that PCB-DS could alleviate oxidative damage, significantly downregulate the expression of Bax, cleaved caspase-3 and cleaved caspase-9, and upregulate the expression of p-PI3K, p-AKT, and Bcl-2.

Conclusion: In summary, this study demonstrated that PCB-DS alleviated CIRI and the molecular mechanism may be related to inhibiting the oxidative stress induced apoptosis through PI3K/AKT/Bcl-2/Bax signaling pathway.

Keywords: Apoptosis; Cerebral ischemia/reperfusion injury; Oxidative injury; Porcine cardiac blood; Salvia miltiorrhiza (Danshen).

MeSH terms

  • Animals
  • Apoptosis
  • Brain Ischemia* / prevention & control
  • Caspase 3 / metabolism
  • Caspase 9 / metabolism
  • Oxidative Stress
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Reperfusion Injury* / pathology
  • Signal Transduction
  • Swine
  • Tandem Mass Spectrometry
  • bcl-2-Associated X Protein / metabolism

Substances

  • dan-shen root extract
  • salvianolic acid
  • Proto-Oncogene Proteins c-akt
  • bcl-2-Associated X Protein
  • Caspase 3
  • Caspase 9
  • Phosphatidylinositol 3-Kinases