Rational design of stable functional metal-organic frameworks

Mater Horiz. 2023 Aug 29;10(9):3257-3268. doi: 10.1039/d3mh00541k.

Abstract

Functional porous metal-organic frameworks (MOFs) have been explored for a number of potential applications in catalysis, chemical sensing, water capture, gas storage, and separation. MOFs are among the most promising candidates to address challenges facing our society related to energy and environment, but the successful implementation of functional porous MOF materials are contingent on their stability; therefore, the rational design of stable MOFs plays an important role towards the development of functional porous MOFs. In this Focus article, we summarize progress in the rational design and synthesis of stable MOFs with controllable pores and functionalities. The implementation of reticular chemistry allows for the rational top-down design of stable porous MOFs with targeted topological networks and pore structures from the pre-selected building blocks. We highlight the reticular synthesis and applications of stable MOFs: (1) MOFs based on high valent metal ions (e.g., Al3+, Cr3+, Fe3+, Ti4+ and Zr4+) and carboxylate ligands; (2) MOFs based on low valent metal ions (e.g., Ni2+, Cu2+, and Zn2+) and azolate linkers. We envision that the synthetic strategies, including modulated synthesis and post-synthetic modification, can potentially be extended to other more complex systems like metal-phosphonate framework materials.

Publication types

  • Review