Diagnostic accuracy of dual-energy computed tomography-based nomogram for differentiating papillary thyroid microcarcinomas from micronodular goiters

Quant Imaging Med Surg. 2023 Jun 1;13(6):3428-3440. doi: 10.21037/qims-22-698. Epub 2023 Apr 6.

Abstract

Background: The misdiagnosis of papillary thyroid microcarcinoma (PTMC) and micronodular goiter (MNG) may lead to overtreatment and unnecessary medical expenditure by patients. This study developed and validated a dual-energy computed tomography (DECT)-based nomogram for the preoperative differential diagnosis of PTMC and MNG.

Methods: This retrospective study analyzed the data of 366 pathologically confirmed thyroid micronodules, of which 183 were PTMCs and 183 were MNGs, from 326 patients who underwent DECT examinations. The cohort was divided into the training (n=256) and validation cohorts (n=110). The conventional radiological features and DECT quantitative parameters were analyzed. The iodine concentration (IC), normalized iodine concentration (NIC), effective atomic number, normalized effective atomic number, and slope of the spectral attenuation curves in the arterial phase (AP) and venous phase (VP) were measured. A univariate analysis and stepwise logistic regression analysis were performed to screen the independent indicators for PTMC. A radiological model, DECT model, and DECT-radiological nomogram were constructed, and the performances of the 3 models were assessed using the receiver operating characteristic curve, DeLong test, and a decision curve analysis (DCA).

Results: The IC in the AP [odds ratio (OR) =0.172], NIC in the AP (OR =0.003), punctate calcification (OR =2.163), and enhanced blurring (OR =3.188) were identified as independent predictors in the stepwise-logistic regression. The areas under the curve with 95% confidence intervals (CIs) of the radiological model, DECT model, and DECT-radiological nomogram were 0.661 (95% CI: 0.595-0.728), 0.856 (95% CI: 0.810-0.902), and 0.880 (95% CI: 0.839-0.921), respectively, in the training cohort; and 0.701 (95% CI: 0.601-0.800), 0.791 (95% CI: 0.704-0.877), and 0.836 (95% CI: 0.760-0.911), respectively, in the validation cohort. The diagnostic performance of the DECT-radiological nomogram was better than that of the radiological model (P<0.05). The DECT-radiological nomogram was found to be well calibrated and had a good net benefit.

Conclusions: DECT provides valuable information for differentiating between PTMC and MNG. The DECT-radiological nomogram could serve as an easy-to-use, noninvasive, and effective method for differentiating between PTMC and MNG and help clinicians in decision-making.

Keywords: Nomogram; diagnosis; dual-energy computed tomography (DECT); micronodular goiter (MNG); papillary thyroid microcarcinoma (PTMC).