D-Band Center Optimization of Edge-Rich Ultrathin RuZn Nanosheets With Moiré Superlattices for pH-Universal Hydrogen Evolution Reaction

Small. 2023 Oct;19(40):e2303440. doi: 10.1002/smll.202303440. Epub 2023 Jun 6.

Abstract

Electrocatalytic hydrogen evolution reaction (HER) is a promising way to produce pure and clean hydrogen. However, the preparation of efficient and economical catalysts for pH-universal HER remains a challenging but rewarding task. Herein, ultrathin RuZn nanosheets (NSs) with moiré superlattices and abundant edges are synthesized. The RuZn NSs with unique structure exhibit superb HER performance with overpotentials of 11, 13, and 29 mV to achieve 10 mA cm-2 in 1 M KOH, 1 M PBS, and 0.5 M H2 SO4 , respectively, which is substantially lower than those of Ru NSs and RuZn NSs without moiré superlattices. Density functional theory investigations reveal that the charge transfer from Zn to Ru will lead the appropriate downshift of the d-band center of surface Ru atoms, thus accelerating hydrogen desorption from the Ru sites, lowering the dissociation energy barrier of water and greatly improving the HER performance. This work provides an effective design scheme for high-performance HER electrocatalysts over a wide pH range, and propose a general route to prepare Ru-based bimetallic nanosheets with moiré superlattices.

Keywords: d-band theory; edge-rich; hydrogen evolution; moiré superlattice; ultrathin nanosheets.