Engaging learners with games-Insights from functional near-infrared spectroscopy

PLoS One. 2023 Jun 6;18(6):e0286450. doi: 10.1371/journal.pone.0286450. eCollection 2023.

Abstract

The use of game elements in learning tasks is thought to facilitate emotional and behavioral responses as well as learner engagement. So far, however, little is known about the underlying neural mechanisms of game-based learning. In the current study, we added game elements to a number line estimation task assessing fraction understanding and compared brain activation patterns to a non-game-based task version. Forty-one participants performed both task versions in counterbalanced order while frontal brain activation patterns were assessed using near-infrared spectroscopy (within-subject, cross-sectional study design). Additionally, heart rate, subjective user experience, and task performance were recorded. Task performance, mood, flow experience, as well as heart rate did not differ between task versions. However, the game-based task-version was rated as more attractive, stimulating and novel compared to the non-game-based task version. Additionally, completing the game-based task version was associated with stronger activation in frontal brain areas generally involved in emotional and reward processing as well as attentional processes. These results provide new neurofunctional evidence substantiating that game elements in learning tasks seem to facilitate learning through emotional and cognitive engagement.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / diagnostic imaging
  • Brain / physiology
  • Cross-Sectional Studies
  • Humans
  • Spectroscopy, Near-Infrared*
  • Video Games* / psychology

Grants and funding

The authors acknowledge the financial support by the University of Graz. This research is partly funded by the Strategic Research Council (SRC) (Grant: 335625). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.