Additive Manufacturing of Liquid Crystal Elastomer Actuators Based on Knitting Technology

Adv Mater. 2023 Sep;35(36):e2302706. doi: 10.1002/adma.202302706. Epub 2023 Jul 20.

Abstract

Liquid crystal elastomer (LCE) exhibits large and reversible deformability originating from the alignment of liquid crystal mesogens. Additive manufacturing provides high controllability in the alignment and shaping process of LCE actuators. However, it still remains a challenge to customize LCE actuators with both diverse 3D deformability and recyclability. In this study, a new strategy is developed to exploit knitting technique to additively manufacture LCE actuators. The obtained LCE actuators are fabric-structured with designed geometry and deformability. By accurately adjusting the parameters of the knitting patterns as modules, diverse geometry is pixel-wise designed, and complex 3D deformations including bending, twisting, and folding are quantitatively controlled. In addition, the fabric-structured LCE actuators can be threaded, stitched, and reknitted to achieve advanced geometry, integrated multi-functions and efficient recyclability. This approach allows the fabrication of versatile LCE actuators with potential applications in smart textiles and soft robots.

Keywords: actuators; additive manufacturing; fibers; knitting; liquid crystal elastomers.