Artificial Intelligence for Improved Hepatosplenomegaly Diagnosis

Curr Probl Diagn Radiol. 2023 Nov-Dec;52(6):501-504. doi: 10.1067/j.cpradiol.2023.05.005. Epub 2023 May 12.

Abstract

Hepatosplenomegaly is commonly diagnosed by radiologists based on single dimension measurements and heuristic cut-offs. Volumetric measurements may be more accurate for diagnosing organ enlargement. Artificial intelligence techniques may be able to automatically calculate liver and spleen volume and facilitate more accurate diagnosis. After IRB approval, 2 convolutional neural networks (CNN) were developed to automatically segment the liver and spleen on a training dataset comprised of 500 single-phase, contrast-enhanced CT abdomen and pelvis examinations. A separate dataset of ten thousand sequential examinations at a single institution was segmented with these CNNs. Performance was evaluated on a 1% subset and compared with manual segmentations using Sorensen-Dice coefficients and Pearson correlation coefficients. Radiologist reports were reviewed for diagnosis of hepatomegaly and splenomegaly and compared with calculated volumes. Abnormal enlargement was defined as greater than 2 standard deviations above the mean. Median Dice coefficients for liver and spleen segmentation were 0.988 and 0.981, respectively. Pearson correlation coefficients of CNN-derived estimates of organ volume against the gold-standard manual annotation were 0.999 for the liver and spleen (P < 0.001). Average liver volume was 1556.8 ± 498.7 cc and average spleen volume was 194.6 ± 123.0 cc. There were significant differences in average liver and spleen volumes between male and female patients. Thus, the volume thresholds for ground-truth determination of hepatomegaly and splenomegaly were determined separately for each sex. Radiologist classification of hepatomegaly was 65% sensitive, 91% specific, with a positive predictive value (PPV) of 23% and an negative predictive value (NPV) of 98%. Radiologist classification of splenomegaly was 68% sensitive, 97% specific, with a positive predictive value (PPV) of 50% and a negative predictive value (NPV) of 99%. Convolutional neural networks can accurately segment the liver and spleen and may be helpful to improve radiologist accuracy in the diagnosis of hepatomegaly and splenomegaly.