Unilateral transfemoral osseointegrated prostheses improve joint loading during walking

J Biomech. 2023 Jun:155:111658. doi: 10.1016/j.jbiomech.2023.111658. Epub 2023 May 26.

Abstract

People with unilateral transfemoral amputation using socket prostheses are at increased risk for developing osteoarthritis in both the residual hip and intact lower-limb joints. Osseointegrated prostheses are a surgical alternative to socket prostheses that directly attach to the residual femur via a bone-anchored implant, however their multi-joint loading effect is largely unknown. Our objective was to establish how osseointegrated prostheses influence joint loading during walking. Motion capture data (kinematics, ground reaction forces) were collected from 12 participants at baseline, with socket prostheses, and 12-months after prosthesis osseointegration during overground walking at self-selected speeds. Subject-specific musculoskeletal models were developed at each timepoint relative to osseointegration. Internal joint moments were calculated using inverse dynamics, muscle and joint reaction forces (JRFs) were estimated with static optimization. Changes in internal joint moments, JRFs, and joint loading-symmetry were compared using statistical parametric mapping (p≤ 0.05) before and after osseointegration. Amputated limb hip flexion moments and anterior JRFs decreased during terminal stance (p = 0.002, <0.001; respectively), while amputated limb hip abduction moments increased during mid-stance (p < 0.001), amputated hip rotation moment changed from internal to external throughout early stance (p < 0.001). Intact limb hip extension and knee flexion moments (p = 0.028, 0.032; respectively), superior and resultant knee JRFs (p = 0.046, 0.049; respectively) decreased during the loading response following prosthesis osseointegration. These results may indicate that the direct loading transmission of these novel prostheses create a more typical mechanical environment in bilateral joints, which is comparable with loading observed in able-bodied individuals and could decrease the risk of development or progression of osteoarthritis.

Keywords: Above-knee amputation; Gait; Musculoskeletal modeling; Osseointegrated prostheses; Socket prostheses.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amputation, Surgical
  • Artificial Limbs* / adverse effects
  • Biomechanical Phenomena
  • Gait / physiology
  • Humans
  • Osseointegration*
  • Prosthesis Implantation / methods
  • Walking / physiology