A Bibliometric Analysis of Research on Decellularized Matrix for Two Decades

Tissue Eng Part C Methods. 2023 Sep;29(9):395-409. doi: 10.1089/ten.TEC.2023.0013. Epub 2023 Jul 7.

Abstract

The articles and reviews in the field of decellularized extracellular matrix (dECM) from 2001 to 2021 were retrieved and extracted from the Web of Science Core Collection. The R package Bibliometrix, CiteSpace, VOSviewer, and the online BIBLIOMETRC platform were utilized for bibliometric analysis, including specific characteristics of annual publications, influential countries/regions, core journals, leading institutions, keywords, key references, cocited authors, journals and institutions, cooperation, and historical direct citations. Our study concluded core references that fueled the development of dECM and highlighted current research directions, hotpots, and trends. From 2001 to 2021, 3,046 publications were retrieved in total, including 2,700 articles and 349 reviews. The United States (n = 895) produced the majority of publications, and the University of Pittsburgh (n = 318) published most productions. Biomaterials were identified as the most productive and influential journal in the dECM field considering the number of publications (n = 194), and total citations (n = 15,694). Immunomodulation, bioreactors, aging, three-dimensional (3D) bioprinting, bone tissue engineering, bioink, hydrogel, biomaterials, and regeneration were the latest high-frequency keywords, indicating the emerging frontiers of dECM. In the field, decellularization techniques lay the foundation. Orthotopic transplantation of recellularized dECM and induction of specific cell differentiation promoted the bursts of research. The 3D bioprinting and hydrogel based on dECM were extensively studied in recent years. The present study provided developmental trajectories, current research status, global collaboration patterns, hotpots, and trending topics of dECM. Decellularization techniques, tissue engineering to regenerate organs, and improvements in application are the major themes over the past two decades. Impact Statement The review article is significant because decellularized extracellular matrix (dECM), which derived from biological tissues and removal of immunogenic cells, is characterized by safety, biocompatibility, and low in toxicity. Showing great application prospects, dECM has been applied in multiple scenarios of tissue repairment and reconstruction, among the most popular topics in tissue engineering. Thus, analyzing and concluding the development, current condition and future trends are of great significance. Comparing to conventional review, this review article systemically and comprehensively concluded the historical development, current status, and research trending topics. Thus, it allows scholars to get a rapid overview of the dECM field, and plan research directions.

Keywords: CiteSpace; VOSviewer; WOS core collection; bibliometric; decellularized extracellular matrix (dECM).

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bibliometrics*
  • Biocompatible Materials
  • Decellularized Extracellular Matrix*
  • Hydrogels

Substances

  • Decellularized Extracellular Matrix
  • Biocompatible Materials
  • Hydrogels