Toward next-generation fuel cell materials

iScience. 2023 May 16;26(6):106869. doi: 10.1016/j.isci.2023.106869. eCollection 2023 Jun 16.

Abstract

The fuel cell's three layers-anode/electrolyte/cathode-convert fuel's chemical energy into electricity. Electrolyte membranes determine fuel cell types. Solid-state and ceramic electrolyte SOFC/PCFC and polymer based PEMFC fuel cells dominate fuel cell research. We present a new fuel cell concept using next-generation ceramic nanocomposites made of semiconductor-ionic material combinations. A built-in electric field driving mechanism boosts ionic (O2- or H+ or both) conductivity in these materials. In a fuel cell device, non-doped ceria or its heterostructure might attain 1 Wcm-2 power density. We reviewed promising functional nanocomposites for that range. Ceria-based and multifunctional semiconductor-ionic electrolytes will be highlighted. Owing to their simplicity and abundant resources, these materials might be used to make fuel cells cheaper and more accessible.

Keywords: Electrochemical materials science; Energy engineering; Materials property.

Publication types

  • Review