Global quantification of newly synthesized proteins reveals cell type- and inhibitor-specific effects on protein synthesis inhibition

PNAS Nexus. 2023 May 19;2(6):pgad168. doi: 10.1093/pnasnexus/pgad168. eCollection 2023 Jun.

Abstract

Manipulation of protein synthesis is commonly applied to uncover protein functions and cellular activities. Multiple inhibitors with distinct mechanisms have been widely investigated and employed in bio-related research, but it is extraordinarily challenging to measure and evaluate the synthesis inhibition efficiencies of individual proteins by different inhibitors at the proteome level. Newly synthesized proteins are the immediate and direct products of protein synthesis, and thus their comprehensive quantification provides a unique opportunity to study protein inhibition. Here, we systematically investigate protein inhibition and evaluate different popular inhibitors, i.e. cycloheximide, puromycin, and anisomycin, through global quantification of newly synthesized proteins in several types of human cells (A549, MCF-7, Jurkat, and THP-1 cells). The inhibition efficiencies of protein synthesis are comprehensively measured by integrating azidohomoalanine-based protein labeling, selective enrichment, a boosting approach, and multiplexed proteomics. The same inhibitor results in dramatic variation of the synthesis inhibition efficiencies for different proteins in the same cells, and each inhibitor exhibits unique preferences. Besides cell type- and inhibitor-specific effects, some universal rules are unraveled. For instance, nucleolar and ribosomal proteins have relatively higher inhibition efficiencies in every type of cells treated with each inhibitor. Moreover, proteins intrinsically resistant or sensitive to the inhibition are identified and found to have distinct functions. Systematic investigation of protein synthesis inhibition in several types of human cells by different inhibitors provides valuable information about the inhibition of protein synthesis, advancing our understanding of inhibiting protein synthesis.

Keywords: bioorthogonal chemistry; mass spectrometry; multiplexed proteomics; newly synthesized proteins; protein inhibition efficiency; protein synthesis inhibition.