Transport Parameters for Combustion Species Based on cAMOEBA Polarizable Force Field

J Chem Theory Comput. 2023 Jun 13;19(11):3237-3250. doi: 10.1021/acs.jctc.2c01234. Epub 2023 Jun 5.

Abstract

In this study, we report a simplified yet accurate general AMOEBA polarizable force field for combustion-interested molecular species, denoted as Combustion-AMOEBA or cAMOEBA. By eliminating the permanent atomic dipoles and quadrupoles, retaining the explicit polarization and defining the general atom types of each molecule species, including alkanes, alkenes, alkynes, alcohols, peroxides, and aldehydes, a simplified and general cAMOEBA force field was constructed and validated using the benchmark results obtained at the QCISD(T)/CBS level of theory. In this way, the tedious parametrization step for permanent atomic multipoles of each new molecule in the original AMOEBA (Poltype/MP2) force field could be avoided, hence providing the capability of accurate high-throughput calculation for a large number of molecules at lower computational cost. The averaged difference between the calculated transport parameters, σ and ε, for approximately 100 different molecules and four bath gases (He, Ne, Ar, and N2) using cAMOEBA and AMOEBA (Poltype/MP2) are of 0.09% and 1.27%, respectively, showing a good consistence of the general cAMOEBA force field with the original AMOEBA (Poltype/MP2) force field where the multipole force field parameters were obtained from quantum mechanical calculation for each small molecule. Our results also indicated that the Lorentz-Berthelot combination rule was more applicable than Waldman-Hagler for obtaining the molecular Lennard-Jones parameters of pure gases from one bath gas, while the Waldman-Hagler combination rule was better for obtaining such parameters from all four bath gases. The pure gas parameters obtained using cAMOEBA can be applied to develop high quality transport property database for combustion modeling.