Exploring a multi-output temporal convolutional network driven encoder-decoder framework for ammonia nitrogen forecasting

J Environ Manage. 2023 Sep 15:342:118232. doi: 10.1016/j.jenvman.2023.118232. Epub 2023 Jun 7.

Abstract

Artificial neural networks exhibit significant advantages in terms of learning capability and generalizability, and have been increasingly applied in water quality prediction. Through learning a compressed representation of the input data, the Encoder-Decoder (ED) structure not only could remove noise and redundancies, but also could efficiently capture the complex nonlinear relationships of meteorological and water quality factors. The novelty of this study lies in proposing a multi-output Temporal Convolutional Network based ED model (TCN-ED) to make ammonia nitrogen forecasts for the first time. The contribution of our study is indebted to systematically assessing the significance of combining the ED structure with advanced neural networks for making accurate and reliable water quality forecasts. The water quality gauge station located at Haihong village of an island in Shanghai City of China constituted the case study. The model input contained one hourly water quality factor and hourly meteorological factors of 32 observed stations, where each factor was traced back to the previous 24 h and each meteorological factor of 32 gauge stations was aggregated into one areal average factor. A total of 13,128 hourly water quality and meteorological data were divided into two datasets corresponding to model training and testing stages. The Long Short-Term Memory based ED (LSTM-ED), LSTM and TCN models were constructed for comparison purposes. The results demonstrated that the developed TCN-ED model can succeed in mimicking the complex dependence between ammonia nitrogen and water quality and meteorological factors, and provide more accurate ammonia nitrogen forecasts (1- up to 6-h-ahead) than the LSTM-ED, LSTM and TCN models. The TCN-ED model, in general, achieved higher accuracy, stability and reliability compared with the other models. Consequently, the improvement can facilitate river water quality forecasting and early warning, as well as benefit water pollution prevention in the interest of river environmental restoration and sustainability.

Keywords: Artificial neural networks (ANNs); Deep learning; Encoder-decoder structure; Sequence-to-Sequence; Water quality forecast.

MeSH terms

  • Ammonia*
  • China
  • Environmental Monitoring* / methods
  • Forecasting
  • Models, Theoretical
  • Nitrogen / analysis
  • Reproducibility of Results

Substances

  • Ammonia
  • Nitrogen