Development and Evaluation of a Mixed-Reality Tele-ultrasound System

Ultrasound Med Biol. 2023 Aug;49(8):1867-1874. doi: 10.1016/j.ultrasmedbio.2023.04.017. Epub 2023 May 30.

Abstract

Objective: The objective of this feasibility study was to develop and assess a tele-ultrasound system that would enable an expert sonographer (situated at the remote site) to provide real-time guidance to an operator (situated at the imaging site) using a mixed-reality environment.

Methods: An architecture along with the operational workflow of the system is designed and a prototype is developed that enables guidance in form of audiovisual cues. The visual cues comprise holograms (of the ultrasound images and ultrasound probe) and is rendered to the operator using a head-mounted display device. The position and orientation of the ultrasound probe's hologram are remotely controlled by the expert sonographer and guide the placement of a physical ultrasound probe at the imaging site. The developed prototype was evaluated for its performance on a network. In addition, a user study (with 12 participants) was conducted to assess the operator's ability to align the probe under different guidance modes.

Results: The network performance revealed the view of the imaging site and ultrasound images were transferred to the remote site in 233 ± 42 and 158 ± 38 ms, respectively. The expert sonographer was able to transfer, to the imaging site, data related to position and orientation of the ultrasound probe's hologram in 78 ± 13 ms. The user study indicated that the audiovisual cues are sufficient for an operator to position and orient a physical probe for accurate depiction of the targeted tissue (p < 0.001). The probe's placement translational and rotational errors were 1.4 ± 0.6 mm and 5.4 ± 2.2º.

Conclusion: The work illustrates the feasibility of using a mixed-reality environment for effective communication between an expert sonographer (ultrasound physician) and an operator. Further studies are required to determine its applicability in a clinical setting during tele-ultrasound.

Keywords: Diagnostic imaging; Head-mounted display; Mixed reality; Tele-medicine; Tele-ultrasound.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Ultrasonography* / methods