Solution Combustion Synthesis and Characterization of Magnesium Copper Vanadates

Inorg Chem. 2023 Jun 12;62(23):8903-8913. doi: 10.1021/acs.inorgchem.3c00452. Epub 2023 Jun 1.

Abstract

Magnesium vanadate (MgV2O6) and its alloys with copper vanadate were synthesized via the solution combustion technique. Phase purity and solid solution formation were confirmed by a variety of experimental techniques, supported by electronic structure simulations based on density functional theory (DFT). Powder X-ray diffraction combined with Rietveld refinement, laser Raman spectroscopy, diffuse reflectance spectroscopy, and high-resolution transmission electron microscopy showed single-phase alloy formation despite the MgV2O6 and CuV2O6 end members exhibiting monoclinic and triclinic crystal systems, respectively. DFT-calculated optical band gaps showed close agreement in the computed optical bandgaps with experimentally derived values. Surface photovoltage spectroscopy, ambient-pressure photoemission spectroscopy, and Kelvin probe contact potential difference (work function) measurements confirmed a systematic variation in the optical bandgap modification and band alignment as a function of stoichiometry in the alloy composition. These data indicated n-type semiconductor behavior for all the samples which was confirmed by photoelectrochemical measurements.