Molecular Phylogeny of Thoracotreme Crabs Including Nine Newly Determined Mitochondrial Genomes

Zoolog Sci. 2023 Jun;40(3):224-234. doi: 10.2108/zs220063.

Abstract

Mitochondrial genomes are used widely for the molecular phylogenetic analysis of animals. Although phylogenetic analyses based on the mitogenomes of brachyurans often yield well-resolved phylogenies, most interfamilial phylogenetic relationships in Thoracotremata remain unclear. We determined nine new mitogenomes of Thoracotremata, including mitogenomes of Camptandriidae (Deiratonotus japonicus), Dotillidae (Ilyoplax integra, Ilyoplax pusilla, and Tmethypocoelis choreutes), Macrophthalmidae (Ilyograpsus nodulosus), Pinnotheridae (Arcotheres sp. and Indopinnixa haematosticta), Plagusiidae (Guinusia dentipes), and Percnidae (Percnon planissimum). Interestingly, Percnon planissimum (Percnidae) was found to possess ≥ 19 repeated sequences in the control region. The gene orders of Il. nodulosus, Arcotheres sp., and In. haematosticta were revealed to be unique among thoracotreme crabs. Although the results of Bayesian and maximum likelihood (ML) phylogenetic analyses of three datasets were incongruent, highly supported clades (PP ≥ 0.99 or BS ≥ 99%) were not contradictory among the analyses. All analyses suggested the paraphyly of Grapsoidea and Ocypodoidea, corroborating the findings of previous studies based on molecular phylogenies of thoracotreme crabs. The phylogenetic positions of symbiotic thoracotreme crabs, Pinnotheridae and Cryptochiridae, were highly supported (Pinnotheridae + Ocypodidae and Cryptochiridae + Grapsidae, respectively) for the Bayesian analyses but not for the ML analyses. Analyses of more thoracotreme species' mitogenome sequences in additional studies will further strengthen the framework for thoracotreme evolution.

Keywords: Decapoda; Percnon planissimum; Thoracotremata; mitogenomes; pea crabs.

MeSH terms

  • Animals
  • Bayes Theorem
  • Brachyura* / genetics
  • Evolution, Molecular
  • Genome, Mitochondrial*
  • Phylogeny