Comparative study between 1-way and 2-way coupled fluid-structure interaction in numerical simulation of aortic arch aneurysms

An Acad Bras Cienc. 2023 May 29;95(suppl 1):e20210859. doi: 10.1590/0001-3765202320210859. eCollection 2023.

Abstract

Hemodynamic forces are related to pathological variations of the cardiovascular system, and numerical simulations for fluid-structure interaction have been systematically used to analyze the behavior of blood flow and the arterial wall in aortic aneurysms. This paper proposes a comparative analysis of 1-way and 2-way coupled fluid-structure interaction for aortic arch aneurysm. The coupling models of fluid-structure interaction were conducted using 3D geometry of the thoracic aorta from computed tomography. Hyperelastic anisotropic properties were estimated for the Holzapfel arterial wall model. The rheological behavior of the blood was modeled by the Carreau-Yasuda model. The results showed that the 1-way approach tends to underestimate von Mises stress, displacement, and strain over the entire cardiac cycle, compared to the 2-way approach. In contrast, the behavior of the variables of flow field, velocity, wall shear stress, and Reynolds number when coupled by the 1-way model was overestimated at the systolic moment and tends to be equal at the diastolic moment. The quantitative differences found, especially during the systole, suggest the use of 2-way coupling in numerical simulations of aortic arch aneurysms due to the hyperelastic nature of the arterial wall, which leads to a strong iteration between the fluid and the arterial wall.

MeSH terms

  • Aneurysm, Aortic Arch*
  • Aortic Aneurysm*
  • Computer Simulation
  • Humans
  • Models, Cardiovascular