Alanine aminotransferase detection using TIT assisted four tapered fiber structure-based LSPR sensor: From healthcare to marine life

Biosens Bioelectron. 2023 Sep 15:236:115424. doi: 10.1016/j.bios.2023.115424. Epub 2023 May 23.

Abstract

Alanine aminotransferase (ALT), a type of inactive enzyme largely present in fish liver cells, is essential for the tricarboxylic acid (TCA) cycle. Monitoring ALT activity in the blood/hepatocellular layer has been demonstrated to be a sensitive sign of liver dysfunction and an essential method for determining the health status of fish. This study details the development of a multi-layer material (hybrids of graphene oxide and multi-walled carbon nanotubes (GO/MWCNTs), gold nanoparticles (AuNPs), and glutamate oxidase (GluOx) enzyme) immobilized localized surface plasmon resonance based unique fiber structure biosensor for the quantitative determination of ALT biomolecules at concentrations ranging from 0 to 1000 U/L. For this kind of detection, a novel taper-in-taper with four tapered (TIT4T) structure based on single-mode fiber has been developed. In addition to AuNPs, GO/MWCNTs were immobilized in the probe's sensing region to increase its LSPR efficiency and sensitivity. Synthesis of AuNPs was carried out utilizing the Turkevich method. The selectivity of the sensor is ensured by the effective immobilization of GluOx on the surface treatment. The linearity of sensor is in the range of 0-1000 U/L, whereas the sensitivity, limit of detection, and detection time are individually found at 7.5 p.m./(U/L), 4.84 U/L and 20 min, respectively. After evaluating the prospective applications of the sensors, the sensors' reusability, reproducibility, stability, pH test, and selectivity have all been found to be satisfactory. Proposed fiber optic biosensors have high sensitivity, robustness, reliability, fast detection, no electromagnetic interference, low cost, real-time monitoring, and biocompatible.

Keywords: Alanine aminotransferase; Fish health status; Graphene oxide; Localized surface plasmon resonance; Multi-walled carbon nanotubes; Nanoparticles.

MeSH terms

  • Alanine Transaminase
  • Biosensing Techniques* / methods
  • Delivery of Health Care
  • Gold / chemistry
  • Metal Nanoparticles* / chemistry
  • Nanotubes, Carbon* / chemistry
  • Reproducibility of Results
  • Surface Plasmon Resonance / methods

Substances

  • Alanine Transaminase
  • Gold
  • Nanotubes, Carbon
  • graphene oxide