Sorption and mobility of cadmium in soil impacted by irrigation waters

Heliyon. 2023 May 19;9(5):e16304. doi: 10.1016/j.heliyon.2023.e16304. eCollection 2023 May.

Abstract

Soil contamination by Cd has drawn global attention, while how irrigation waters modulate Cd sorption and mobility in soil remains obscure. We address this by investigating how cropped sandy soil irrigated with different waters altered Cd sorption and mobility using a rhizobox experiment followed by a batch experiment. Maize were planted in the rhizoboxes and irrigated by reclaimed water (RW), livestock wastewater (LW) and deionized water (CK), respectively. The bulk soil sampled from each treatment after 60 days of growth was employed to measure the Cd sorption and mobility using the isothermal adsorption and desorption experiments. The results showed that, in a small rhizobox experiment, the adsorption rate of Cd by the bulk soil in the adsorption phase was much faster than the desorption rate in desorption phase. Irrigation with RW and LW both reduced the Cd adsorption capacity of soil, and the reducing degree brought by LW was more obvious. Cd desorption rate was very low but keep increasing in the desorption stage, and pre-RW irrigation had the potential to increase Cd desorption from soil. Although the results were obtained based on the bulk soil sampled from a rhizobox experiment, our study strongly suggests that the altered Cd adsorption and desorption behavior in the soil caused by the RW and LW irrigation may risk the farmland ecosystem and deserve more concern.

Keywords: Cadmium; Desorption; Livestock wastewater irrigation; Reclaimed water irrigation; Soil; Sorption.