Human umbilical cord mesenchymal stem cell treatment alleviates symptoms in an atopic dermatitis-like mouse model

Stem Cell Res Ther. 2023 May 29;14(1):147. doi: 10.1186/s13287-023-03365-w.

Abstract

Background: Atopic dermatitis (AD) is one of the most common immune and inflammatory skin disorders, leading to insufferable itching and skin abnormalities that seriously affect life quality of patients. There are still huge unmet needs for long-term and effective disease control, despite currently available therapies. Evidenced by some preclinical and clinical studies of AD treatment with stem cells, stem cell treatment could significantly and effectively ameliorate AD symptoms.

Objectives: To elucidate underlying mechanisms of how stem cells therapy alleviates AD-like symptoms.

Methods: An AD-like mouse model was constructed and treated with mesenchymal stem cells (MSCs) subcutaneously or subcutaneously combined with intravenously. The differentially expressed genes were sorted out from RNA sequencing results of dorsal skin and blood.

Results: Two injection routes of MSCs could alleviate AD-like symptoms and pathologic changes of the skin and immune organs. RNA sequencing of dorsal skin sections and blood provided gene expression signatures for amelioration of skin defects, inflammatory and immune modulation by MSCs, as well as common AD molecular markers for the skin and blood, which may benefit for clinical diagnosis. IL-1β and its signaling pathway were specifically found to be associated with the development of AD-like dermatitis lesions. MSC treatment effectively inhibited the JAK-STAT pathway and receptors of IL-4, IL-13, IL-17, and IgE.

Conclusions: MSC therapy could regulate abnormal immune and inflammatory status in AD. Mechanistic exploration will contribute to the development of personalized AD treatment based on MSCs.

Keywords: Atopic dermatitis; Biomarkers; Mesenchymal stem cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cytokines / metabolism
  • Dermatitis, Atopic* / therapy
  • Humans
  • Immunologic Factors / pharmacology
  • Janus Kinases / metabolism
  • Mesenchymal Stem Cells* / metabolism
  • Mice
  • STAT Transcription Factors / metabolism
  • Signal Transduction
  • Skin / pathology
  • Umbilical Cord / metabolism

Substances

  • Janus Kinases
  • STAT Transcription Factors
  • Immunologic Factors
  • Cytokines