Dual roles of CYP302A1 in regulating ovarian maturation and molting in Macrobrachium nipponense

J Steroid Biochem Mol Biol. 2023 Sep:232:106336. doi: 10.1016/j.jsbmb.2023.106336. Epub 2023 May 27.

Abstract

CYP302A1 is a member of the Halloween genes in the cytochrome P450 supergene family, which play an important regulatory role in the synthesis of 20-hydroxyecdysone (20E) in crustaceans and insects. In this study, we found that the Mn-CYP302A1sequence included typical CYP450 conserved domains. Phylogenic showed that it is closely related to crustaceans and insects. q-PCR analysis indicated that Mn-CYP302A1 was highly expressed in the ovaries and peaked before ovarian maturation. Mn-CYP302A1 expression was higher at the post-larval stage of day 15 than at other stages of embryogenesis. In situ hybridization indicated that Mn-CYP302A1 was mainly distributed in the nucleus, yolk granules, cell membrane and cytoplasm To further establish the function of CYP302A1, a 21-day RNA interference experiment was conducted. On day 16, the Gonad Somatic Index of the control group and the experimental group showed significant differences, with GSI of 11.72% in the control group and 3.21% in the experimental group. The cumulative proportion of the second entry into stage O-Ⅲ was 100% in the control group, while it was 41.67% in the experimental group on day 21. The ecdysone content was 8.91nmol/L in the control group and 6.11nmol/L in the experimental group on day 9. A significant difference in the molting proportion between the control group and the experimental group was also observed (49% in the control group and 34% in the experimental group) on day 16. Statistical results showed that the average molting cycle of the control group was 14.5 days, while that of the experimental group was 16.5 days. However, the morphological structure of ovarian tissue did not abnormal change. Therefore, the results of this study suggest that Mn-CYP302A1 can promote ovarian maturation and molting in female M. nipponense.

Keywords: CYP302A1; Macrobrachium nipponense; Molting; Ovarian maturation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ecdysone / metabolism
  • Female
  • Insecta
  • Molting* / genetics
  • Palaemonidae* / genetics
  • Sex Differentiation

Substances

  • Ecdysone