Light-Based 3D Printing of Gelatin-Based Biomaterial Inks to Create a Physiologically Relevant In Vitro Fish Intestinal Model

Macromol Biosci. 2023 Oct;23(10):e2300016. doi: 10.1002/mabi.202300016. Epub 2023 Jun 15.

Abstract

To provide prominent accessibility of fishmeal to the European population, the currently available, time- and cost-extensive feeding trials, which evaluate fish feed, should be replaced. The current paper reports on the development of a novel 3D culture platform, mimicking the microenvironment of the intestinal mucosa in vitro. The key requirements of the model include sufficient permeability for nutrients and medium-size marker molecules (equilibrium within 24 h), suitable mechanical properties (G' < 10 kPa), and close morphological similarity to the intestinal architecture. To enable processability with light-based 3D printing, a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink is developed and combined with Tween 20 as porogen to ensure sufficient permeability. To assess the permeability properties of the hydrogels, a static diffusion setup is utilized, indicating that the hydrogel constructs are permeable for a medium size marker molecule (FITC-dextran 4 kg mol-1 ). Moreover, the mechanical evaluation through rheology evidence a physiologically relevant scaffold stiffness (G' = 4.83 ± 0.78 kPa). Digital light processing-based 3D printing of porogen-containing hydrogels results in the creation of constructs exhibiting a physiologically relevant microarchitecture as evidenced through cryo-scanning electron microscopy. Finally, the combination of the scaffolds with a novel rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line (RTdi-MI) evidence scaffold biocompatibility.

Keywords: digital light processing; fish tissue engineering; gelatin; hydrogels.