Bacterial Oncotraits Rather than Spatial Organization Are Associated with Dysplasia in Ulcerative Colitis

J Crohns Colitis. 2023 Nov 24;17(11):1870-1881. doi: 10.1093/ecco-jcc/jjad092.

Abstract

Background and aims: Colonic bacterial biofilms are frequently present in ulcerative colitis [UC] and may increase dysplasia risk through pathogens expressing oncotraits. This prospective cohort study aimed to determine [1] the association of oncotraits and longitudinal biofilm presence with dysplasia risk in UC, and [2] the relation of bacterial composition with biofilms and dysplasia risk.

Methods: Faeces and left- and right-sided colonic biopsies were collected from 80 UC patients and 35 controls. Oncotraits [FadA of Fusobacterium, BFT of Bacteroides fragilis, colibactin [ClbB] and Intimin [Eae] of Escherichia coli] were assessed in faecal DNA with multiplex quantitative polymerase chain reaction [qPCR]. Biopsies were screened for biofilms [n = 873] with 16S rRNA fluorescent in situ hybridiation. Shotgun metagenomic sequencing [n = 265], and ki67-immunohistochemistry were performed. Associations were determined with a mixed-effects regression model.

Results: Biofilms were highly prevalent in UC patients [90.8%] with a median persistence of 3 years (interquartile range [IQR] 2-5 years). Biofilm-positive biopsies showed increased epithelial hypertrophy [p = 0.025] and a reduced Shannon diversity independent of disease status [p = 0.015], but were not significantly associated with dysplasia in UC: adjusted odds ratio [aOR] 1.45, 95% confidence interval [CI] 0.63-3.40. In contrast, ClbB independently associated with dysplasia [aOR 7.16, 95% CI 1.75-29.28], and FadA and Fusobacteriales were associated with a decreased dysplasia risk in UC [aOR 0.23, 95% CI 0.06-0.83, p <0.01].

Conclusions: Biofilms are a hallmark of UC; however, because of their high prevalence are a poor biomarker for dysplasia. In contrast, colibactin presence and FadA absence independently associate with dysplasia in UC and might therefore be valuable biomarkers for future risk stratification and intervention strategies.

Keywords: Microbiology; biomarkers; pathology.

MeSH terms

  • Biomarkers
  • Colitis, Ulcerative* / pathology
  • Humans
  • Hyperplasia
  • Prospective Studies
  • RNA, Ribosomal, 16S / genetics

Substances

  • colibactin
  • RNA, Ribosomal, 16S
  • Biomarkers