A CMOS-MEMS Pixel Sensor for Thermal Neutron Imaging

Micromachines (Basel). 2023 Apr 27;14(5):952. doi: 10.3390/mi14050952.

Abstract

A monolithic pixel sensor with high spatial granularity (35 × 40 μm2) is presented, aiming at thermal neutron detection and imaging. The device is made using the CMOS SOIPIX technology, with Deep Reactive-Ion Etching post-processing on the backside to obtain high aspect-ratio cavities that will be filled with neutron converters. This is the first monolithic 3D sensor ever reported. Owing to the microstructured backside, a neutron detection efficiency up to 30% can be achieved with a 10B converter, as estimated by the Geant4 simulations. Each pixel includes circuitry that allows a large dynamic range and energy discrimination and charge-sharing information between neighboring pixels, with a power dissipation of 10 µW per pixel at 1.8 V power supply. The initial results from the experimental characterization of a first test-chip prototype (array of 25 × 25 pixels) in the laboratory are also reported, dealing with functional tests using alpha particles with energy compatible with the reaction products of neutrons with the converter materials, which validate the device design.

Keywords: front-end; microstructured sensors; monolithic sensors; solid-state detectors; thermal neutron detectors.