Enriched Environment Induces Sex-Specific Changes in the Adult Neurogenesis, Cytokine and miRNA Expression in Rat Hippocampus

Biomedicines. 2023 May 2;11(5):1341. doi: 10.3390/biomedicines11051341.

Abstract

An enriched environment stimulates adult hippocampal plasticity, but the exact cellular and molecular mechanisms are complex, and thus a matter of debate. We studied the behavior and hippocampal neurogenesis in adult male and female Wistar rats that were housed in an enriched environment (EE) for two months. Both EE males and females performed better than control animals in a Barnes maze, meaning that EE enhances spatial memory. However, the expression levels of neurogenesis markers KI67, DCX, Nestin, and Syn1 increased only in EE females, while in EE males only KI67 and BDNF were higher than in the corresponding control. The number of DCX+ neurons on brain slices increased in the dentate gyrus of EE females only, i.e., the level of adult hippocampal neurogenesis was increased in female but not in male rats. The level of anti-inflammatory IL-10 and signaling pathway components was upregulated in EE females. Of 84 miRNAs tested, in the hippocampi of EE female rats we detected upregulation in the expression levels of 12 miRNAs related to neuronal differentiation and morphogenesis, while in EE males four miRNAs were upregulated and involved in the regulation of cell proliferation/differentiation, and one was downregulated and associated with the stimulation of proliferation. Taken altogether, our results point to sex-specific differences in adult hippocampal plasticity, IL-10 expression, and miRNA profiles induced by an enriched environment.

Keywords: IL-10; enriched environment; hippocampus; miRNA; neurogenesis; rats.