Mitochondrial Oxidative Stress Mediates Bradyarrhythmia in Leigh Syndrome Mitochondrial Disease Mice

Antioxidants (Basel). 2023 Apr 26;12(5):1001. doi: 10.3390/antiox12051001.

Abstract

Mitochondrial oxidative stress has been implicated in aging and several cardiovascular diseases, including heart failure and cardiomyopathy, ventricular tachycardia, and atrial fibrillation. The role of mitochondrial oxidative stress in bradyarrhythmia is less clear. Mice with a germline deletion of Ndufs4 subunit respiratory complex I develop severe mitochondrial encephalomyopathy resembling Leigh Syndrome (LS). Several types of cardiac bradyarrhythmia are present in LS mice, including a frequent sinus node dysfunction and episodic atrioventricular (AV) block. Treatment with the mitochondrial antioxidant Mitotempo or mitochondrial protective peptide SS31 significantly ameliorated the bradyarrhythmia and extended the lifespan of LS mice. Using an ex vivo Langendorff perfused heart with live confocal imaging of mitochondrial and total cellular reactive oxygen species (ROS), we showed increased ROS in the LS heart, which was potentiated by ischemia-reperfusion. A simultaneous ECG recording showed a sinus node dysfunction and AV block concurrent with the severity of the oxidative stress. Treatment with Mitotempo abolished ROS and restored the sinus rhythm. Our study reveals robust evidence of the direct mechanistic roles of mitochondrial and total ROS in bradyarrhythmia in the setting of LS mitochondrial cardiomyopathy. Our study also supports the potential clinical application of mitochondrial-targeted antioxidants or SS31 for the treatment of LS patients.

Keywords: Leigh Syndrome; arrhythmia; bradycardia; cardiomyopathy; mitochondria; oxidative stress.