Host-guest coupling to potentially increase the bio-accessibility of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea by nanocarrier graphyne for brain tumor therapy, a comprehensive quantum mechanics study

J Mol Graph Model. 2023 Sep:123:108517. doi: 10.1016/j.jmgm.2023.108517. Epub 2023 May 16.

Abstract

This study aimed to explore the potential of Host-Guest coupling with Nanocarrier graphyne (GPH) to enhance the bioavailability of the drug 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (LUM) for brain tumor therapy. The electronic, geometric, and excited-state properties of GPH, LUM, and the graphyne@1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea-complex (GPH@LUM-complex) were studied using DFT B3LYP/6-31G** level of theory. The results showed that the GPH@LUM-complex was stable with negative adsorption energy (-0.20 eV), and there was good interaction between GPH and LUM in the solvent phase. The weak interaction forces between the two indicated an easy release of the drug at the target site. The Frontier Molecular Orbitals (FMO), Charge Density Analysis (CDA), and Natural Bond Orbital (NBO) analysis supported LUM to GPH charge transfer during complex formation, and the Reduced Density Gradient (RDG) isosurfaces identified steric effects and non-bonded interactions. UV-visible examination showed the potential of the GPH@LUM-complex as a drug carrier with a blue shift of 23 nm wavelength in the electronic spectra. The PET process analysis revealed a fluorescence-quenching process, facilitating systematic drug delivery. The study concluded that GPH had potential as a carrier for delivering LUM, and different 2D nanomaterials could be explored for drug delivery applications. The theoretical study's findings may motivate researchers to investigate the practical applications of GPH@LUM-complex in oncology.

Keywords: 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea; B3LYP/6-31G level of theory; DFT; Drug delivery; Nano-carrier graphyne.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain Neoplasms*
  • Humans
  • Nitrosourea Compounds*

Substances

  • Nitrosourea Compounds