Wrinkled Thermo-Electric Meander-Shaped Element on a Thin Freestanding PDMS Membrane

Membranes (Basel). 2023 May 11;13(5):508. doi: 10.3390/membranes13050508.

Abstract

Natural wrinkling of metal films on silicone substrates can appear by means of the metal sputtering process and can be described by the continuous elastic theory and non-linear wrinkling model. Here, we report the fabrication technology and behavior of thin freestanding Polydimethylsiloxane (PDMS) membranes equipped with thermo-electric meander-shaped elements. The Cr/Au wires were obtained on the silicone substrate by magnetron sputtering. We observe wrinkle formation and suppose furrows appear once PDMS returns to its initial state after the thermo-mechanical expansion during sputtering. Although the substrate thickness is usually a negligible parameter in the theory of wrinkle formation, we found that the self-assembled wrinkling architecture of the PDMS/Cr/Au varies due to the membrane thickness of 20 µm and 40 µm PDMS. We also demonstrate that the wrinkling of the meander wire affects its length, and it causes a 2.7 times higher resistance compared to a calculated value. Therefore, we investigate the influence of the PDMS mixing ratio on the thermo-electric meander-shaped elements. For the stiffer PDMS with a mixing ratio of 10:4, the resistance due to wrinkle amplitude alterations is 25% higher compared to the PDMS of ratio 10:1. Additionally, we observe and describe a thermo-mechanically induced motion behavior of the meander wires on completely freestanding PDMS membrane under applied current. These results can improve the understanding of wrinkle formation, which influences thermo-electric characteristics and may promote the integration of this technology in applications.

Keywords: meander; metallization; polydimethylsiloxane; ultra-thin freestanding membrane; wrinkle.