Esrrγa regulates nephron and ciliary development by controlling prostaglandin synthesis

Development. 2023 May 15;150(10):dev201411. doi: 10.1242/dev.201411. Epub 2023 May 26.

Abstract

Cilia are essential for the ontogeny and function of many tissues, including the kidney. Here, we report that transcription factor ERRγ ortholog estrogen related receptor gamma a (Esrrγa) is essential for renal cell fate choice and ciliogenesis in zebrafish. esrrγa deficiency altered proximodistal nephron patterning, decreased the multiciliated cell populace and disrupted ciliogenesis in the nephron, Kupffer's vesicle and otic vesicle. These phenotypes were consistent with interruptions in prostaglandin signaling, and we found that ciliogenesis was rescued by PGE2 or the cyclooxygenase enzyme Ptgs1. Genetic interaction revealed that peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (Ppargc1a), which acts upstream of Ptgs1-mediated prostaglandin synthesis, has a synergistic relationship with Esrrγa in the ciliogenic pathway. These ciliopathic phenotypes were also observed in mice lacking renal epithelial cell (REC) ERRγ, where significantly shorter cilia formed on proximal and distal tubule cells. Decreased cilia length preceded cyst formation in REC-ERRγ knockout mice, suggesting that ciliary changes occur early during pathogenesis. These data position Esrrγa as a novel link between ciliogenesis and nephrogenesis through regulation of prostaglandin signaling and cooperation with Ppargc1a.

Keywords: esrrγa; ptgs1; Cilia; Differentiation; Kidney; Multiciliated cell; Nephron; Prostaglandin; Zebrafish.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cilia / metabolism
  • Kidney / metabolism
  • Mice
  • Nephrons / metabolism
  • Prostaglandins / metabolism
  • Zebrafish Proteins* / genetics
  • Zebrafish* / genetics

Substances

  • Zebrafish Proteins
  • Prostaglandins