Development of High Efficiency, Spray-Coated Perovskite Solar Cells and Modules Using Additive-Engineered Porous PbI2 Films

Small Methods. 2024 Feb;8(2):e2300237. doi: 10.1002/smtd.202300237. Epub 2023 May 25.

Abstract

The development of anti-solvent free, scalable, and printable perovskite film is crucial to realizing the low-cost roll-to-roll development of perovskite solar cells (PSCs). Herein, large-area perovskite film fabrication is explored using a spray-assisted sequential deposition technique. How propylene carbonate (PC) solvent additive affects the transformation of lead halide (PbI2 ) into perovskite at room temperature is investigated. The result shows that PC-modified perovskite films exhibit a uniform, pinhole-free morphology with oriented grains compared with pristine perovskite films. The PC-modified perovskite film also has a prolonged fluorescence lifetime that indicates lower carrier recombination. The champion PSC devices based on PC-modified perovskite film realize a power conversion efficiency (PCE) of 20.5% and 19.3% at an active area (A) of 0.09 cm2 and 1 cm2 , respectively. The fabricated PSCs are stable and demonstrate ≥85% PCE retention following 60 days of exposure to ambient conditions. Furthermore, perovskite solar modules (A ≈ 13 cm2 ) that yield a PCE of 15.8% are fabricated. These results are among the best reported for the state-of-art spray-coated PSCs. Spray deposition coupled with a PC additive is highly promising for economical and high-output preparation of PSCs.

Keywords: PSC modules; large area perovskite; propylene carbonate; scalable printing; stability.