Supramolecular Polymer-Nanomedicine Hydrogel Loaded with Tumor Associated Macrophage-Reprogramming polyTLR7/8a Nanoregulator for Enhanced Anti-Angiogenesis Therapy of Orthotopic Hepatocellular Carcinoma

Adv Sci (Weinh). 2023 Aug;10(22):e2300637. doi: 10.1002/advs.202300637. Epub 2023 May 25.

Abstract

Anti-angiogenic therapies targeting inhibition of vascular endothelial growth factor (VEGF) pathway show clinical benefit in hypervascular hepatocellular carcinoma (HCC) tumors. However, HCC expresses massive pro-angiogenic factors in the tumor microenvironment (TME) in response to anti-angiogenic therapy, recruiting tumor-associated macrophages (TAMs), leading to revascularization and tumor progression. To regulate cell types in TME and promote the therapeutic efficiency of anti-angiogenic therapy, a supramolecular hydrogel drug delivery system (PLDX-PMI) co-assembled by anti-angiogenic nanomedicines (PCN-Len nanoparticles (NPs)) and oxidized dextran (DX), and loaded with TAMs-reprogramming polyTLR7/8a nanoregulators (p(Man-IMDQ) NRs) is developed for orthotopic liver cancer therapy. PCN-Len NPs target tyrosine kinases of vascular endothelial cells and blocked VEGFR signaling pathway. p(Man-IMDQ) NRs repolarize pro-angiogenic M2-type TAMs into anti-angiogenic M1-type TAMs via mannose-binding receptors, reducing the secretion of VEGF, which further compromised the migration and proliferation of vascular endothelial cells. On highly malignant orthotopic liver cancer Hepa1-6 model, it is found that a single administration of the hydrogel formulation significantly decreases tumor microvessel density, promotes tumor vascular network maturation, and reduces M2-subtype TAMs, thereby effectively inhibiting tumor progression. Collectively, findings in this work highlight the great significance of TAMs reprogramming in enhancing anti-angiogenesis treatment for orthotopic HCC, and provides an advanced hydrogel delivery system-based synergistic approach for tumor therapy.

Keywords: anti-angiogenic therapy; nanoregulator; orthotopic hepatocellular carcinoma; supramolecular hydrogel; tumor microenvironment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Hepatocellular* / drug therapy
  • Carcinoma, Hepatocellular* / metabolism
  • Endothelial Cells / metabolism
  • Humans
  • Hydrogels / therapeutic use
  • Liver Neoplasms* / drug therapy
  • Liver Neoplasms* / metabolism
  • Nanomedicine
  • Polymers / therapeutic use
  • Tumor Microenvironment
  • Tumor-Associated Macrophages
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • Vascular Endothelial Growth Factor A
  • Hydrogels
  • Polymers